Our site uses cookies necessary for its proper functioning. To improve your experience, other cookies may be used: you can choose to disable them. This can be changed at any time via the Cookies link at the bottom of the page.


Université de Bordeaux
ELORPrintTecEquipment of Excellence
Cluster of excellence
 

High and Temperature-Independent Dielectric Constant Dielectrics from PVDF-Based Terpolymer and Copolymer Blends

AFM images of height and phase of fluorinated polymer blend films at different terpolymer/copolymer ratios (100/0, 95/5, 90/10, 80/20, 70/30, 0/100) (tapping mode, 1 µm × 1 µm scan area).AFM images of height and phase of fluorinated polymer blend films at different terpolymer/copolymer ratios (100/0, 95/5, 90/10, 80/20, 70/30, 0/100) (tapping mode, 1 µm × 1 µm scan area).

Relaxor ferroelectric polymers exhibit high k at their structural phase transition around room temperature. They are particularly attractive as gate dielectric in organic field effect transistor (OFET). Nevertheless, their applications are limited due to their low thermal stability. A polymer blend system with a high and thermally stable dielectric constant is demonstrated by mixing terpolymer poly(vinylidene fluoride‐trifluoroethylene‐chlorofluorethylene) P(VDF‐ter‐TrFE‐ter‐CFE) with copolymer poly(vinylidene fluoride‐trifluoroethylene) P(VDF‐co‐TrFE). PVDF‐based blends of various compositions are characterized by dielectric spectroscopy, differential scanning calorimetry (DSC), infrared spectroscopy, small and wide angle X‐ray scattering (SAXS and WAXS), and atomic force microscopy (AFM) in order to investigate the relationship between morphology and crystallization of the blend and their dielectric properties. An optimized blend of P(VDF‐ter‐TrFE‐ter‐CFE) [55/37/8] and P(VDF‐co‐TrFE) [46/54] at a ratio of 70/30 is found to exhibit a quasi‐constant dielectric constant of 40 ± 2 over a wide temperature range (20–80 °C). Furthermore, electrical characteristics of the PVDF‐blend‐based gate dielectric OFET show further thermal stability in comparison to OFET based on high‐k terpolymer P(VDF‐ter‐TrFE‐ter‐CFE) [55/37/8]. An improvement of their drain current stability by up to 60% is demonstrated at 60 °C. These findings enable broader applications of fluoropolymers in organic electronics.

D. THUAU, K. KALLITSIS, S. HA, F. BARGAIN, T. SOULESTIN, G. PECASTAINGS, S. TENCÉ-GIRAULT, F. DOMINGUES DOS SANTOS, G. HADZIIOANNOU


Adv. Electron. Mater., 1901250, https://doi.org/10.1002/aelm.201901250 2020

Picture in categories